Сборник задач по математике. богомолов н.в.- книгу скачать.
5-е изд., стер. - М.: Дрофа, 2009. - 206 с. В пособии представлены задачи по основным разделам математики: алгебре, началам анализа, дифференциальному и интегральному исчислениям, дифференциальным уравнениям, аналитической геометрии на плоскости, стереометрии, а также элементам комбинаторики и теории вероятностей. Выделены упражнения и задачи повышенной сложности и для повторения за курс девятилетней школы. Приводится справочный теоретический материал. Издание является одной из книг учебного комплекта, в который также входят учебник «Математика» Н. В. Богомолова, П. И. Самойленко (М.: Дрофа, 2002. — 400 с.) и «Сборник дидактических заданий по математике» Н. В. Богомолова и Л. Ю. Сергиенко. Для студентов техникумов гуманитарных направлений, педагогических, финансово-экономических, технических, строительных, сельскохозяйственных. Может быть использован школьниками старших классов общеобразовательных школ и слушателями курсов по подготовке в вузы. Формат: djvu / zip Размер: 4 Мб Скачать: Onlinedisk RGhost Формат: pdf / zip Размер: 5 Мб Скачать: Onlinedisk RGhost См. также: Математика. (Учебник для ссузов) Богомолов Н.В., Самойленко П.И. (2010, 400с.) ОГЛАВЛЕНИЕПредисловиеЧАСТЬ 1. АЛГЕБРАМ НАЧАЛА АНАЛИЗАГЛАВА 1. ЛИНЕЙНЫЕ И КВАДРАТНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА. ЭЛЕМЕНТЫ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ§ 1. Действия над действительными и комплексными числами 4§ 2. Действия над приближенными числами. Абсолютная и относительная погрешности 6§ 3. Линейные уравнения с одной переменной 8§ 4. Линейные неравенства 9§ 5. Системы линейных уравнений 11§ 6. Квадратные уравнения 12§ 7. Квадратные неравенства 15§ 8. Иррациональные уравнения и иррациональные неравенства 16§ 9. Нелинейные системы уравнений с двумя переменными 17ГЛАВА 2. ЛОГАРИФМИЧЕСКАЯ И ПОКАЗАТЕЛЬНАЯ ФУНКЦИИ§ 10. Логарифмическая функция 19§ 11. Показательные уравнения и системы показательных уравнений. Показательные неравенства 20§ 12. Логарифмические уравнения и системы логарифмических уравнений. Логарифмические неравенства 22ГЛАВА 3. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ§ 13. Векторы на плоскости 23§ 14. Радианное измерение дуг и углов 24§ 15. Числовые значения и знаки тригонометрических функций 25§ 16. Вычисление значений тригонометрических функций по данному значению одной из них 26§ 17. Основные тригонометрические тождества. Доказательства тождеств 27§ 18. Периодичность тригонометрических функций 28§ 19. Формулы приведения 30§ 20. Обратные тригонометрические функции 31§ 21. Тригонометрические уравнения. Простейшие тригонометрические неравенства 32§ 22. Тригонометрические функции алгебраической суммы двух аргументов (формулы сложения) 35§ 23. Тригонометрические функции удвоенного аргумента (формулы удвоения) 36§ 24. Тригонометрические функции половинного аргумента (формулы деления) 38§ 25. Преобразование произведения тригонометрических функций в алгебраическую сумму 40§ 26. Преобразование алгебраической суммы тригонометрических функций в произведение 41ГЛАВА 4. ПРЕДЕЛЫ И ПРОИЗВОДНЫЕ§ 27. Предел функции 43§ 28. Производная степени и корня 45§ 29. Производная сложной функции (функции от функции). ... 46§ 30. Геометрические приложения производной 47§ 31. Физические приложения производной 48§ 32. Производные тригонометрических функций. Производные обратных тригонометрических функций 49§ 33. Производные логарифмических и показательных функций 50§ 34. Исследование функций с применением производной 51§ 35. Дифференциал функции. Приложение дифференциала к приближенным вычислениям 55ГЛАВА 5. ИНТЕГРАЛЫ§ 36. Неопределенный интеграл. Непосредственное интегрирование 57§ 37. Геометрические и физические приложения неопределенного интеграла 58§ 38. Вычисление неопределенного интеграла методом замены переменной (способом подстановки) 60§ 39. Определенный интеграл и его непосредственное вычисление 62§ 40. Дифференциальные уравнения 63ГЛАВА 6. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ§ 41. Элементы комбинаторики 65§ 42. Элементы теории вероятностей 66ЧАСТЬ 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ. ЭЛЕМЕНТЫ СТЕРЕОМЕТРИИГЛАВА 7. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ§ 43. Прямая линия 68§ 44. Окружность 72§ 45. Эллипс 73§ 46. Гипербола 74§ 47. Парабола с вершиной в начале координат 75§ 48. Парабола со смещенной вершиной 76ГЛАВА 8. ЭЛЕМЕНТЫ СТЕРЕОМЕТРИИ§ 49. Прямая и плоскость в пространстве 11§ 50. Призма и параллелепипед 79§ 51. Площади поверхностей призмы и параллелепипеда 80§ 52. Пирамида. Усеченная пирамида 82§ 53. Площади поверхностей пирамиды и усеченной пирамиды 84§ 54. Цилиндр 86§ 55. Площади боковой и полной поверхностей цилиндра 87§ 56. Конус. Усеченный конус 88§ 57. Площади боковой и полной поверхностей конуса и усеченного конуса 89§ 58. Сфера и шар. Вписанная и описанная сферы. Площади поверхностей сферы и ее частей 90§ 59. Объемы призмы и параллелепипеда 92§ 60. Объем пирамиды. Объем усеченной пирамиды 93§ 61. Объемы фигур вращения 95§ 62. Вычисление объемов фигур вращения с помощью определенного интеграла 97ЧАСТЬ 3. ДОПОЛНИТЕЛЬНЫЕ УПРАЖНЕНИЯ И ЗАДАЧИГЛАВА 9. ДОПОЛНИТЕЛЬНЫЕ УПРАЖНЕНИЯ И ЗАДАЧИ ПО АЛГЕБРЕ§ 63. Линейные уравнения с одной переменной и системы линейных уравнений 98§ 64. Линейные неравенства и системы линейных неравенств 102§ 65. Решение неравенств методом промежутков (интервалов). Решение неравенств с модулем 104§ 66. Квадратные уравнения. Уравнения, приводимые к квадратным 104§ 67. Иррациональные уравнения и неравенства 108§ 68. Системы уравнений второй и выше степеней 109§ 69. Показательные и логарифмические уравнения и неравенства 111ГЛАВА 10. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ. ДОПОЛНИТЕЛЬНЫЕ УПРАЖНЕНИЯ§ 70. Тригонометрические тождества . 115§ 71. Теоремы сложения. Тригонометрические функции двойного и половинного аргументов 117§ 72. Преобразование алгебраической суммы тригонометрических функций в произведение 118§ 73. Тригонометрические уравнения и тригонометрические неравенства 120ГЛАВА 11. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ§ 74. Прямая линия 122§ 75. Геометрические места точек на плоскости. Кривые второго порядка 123ГЛАВА 12. ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ§ 76. Приложения производной к исследованию функций 126§ 77. Физические приложения производной 129ГЛАВА 13. ЭЛЕМЕНТЫ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ§ 78. Геометрические приложения неопределенного интеграла 130§ 79. Физические приложения неопределенного интеграла 131§ 80. Определенный интеграл 132ЧАСТЬ 4. УПРАЖНЕНИЯ И ЗАДАЧИ ДЛЯ ПОВТОРЕНИЯ ЗА КУРС ДЕВЯТИЛЕТНЕЙ ШКОЛЫГЛАВА 14. АРИФМЕТИЧЕСКИЕ И АЛГЕБРАИЧЕСКИЕ ДЕЙСТВИЯ§ 81. Арифметические действия 135§ 82. Алгебраические действия 137ГЛАВА 15. ЛИНЕЙНЫЕ УРАВНЕНИЯ И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ.ЛИНЕЙНЫЕ НЕРАВЕНСТВА И СИСТЕМЫ ЛИНЕЙНЫХ НЕРАВЕНСТВ. ДРОБНЫЕ ПОКАЗАТЕЛИ§ 83. Линейные уравнения и системы линейных уравнений 139§ 84. Линейные неравенства и системы линейных неравенств с одной переменной 141§ 85. Действия с дробными показателями и корнями 142ГЛАВА 16. КВАДРАТНЫЕ УРАВНЕНИЯ И КВАДРАТНЫЕ НЕРАВЕНСТВА. ПРОГРЕССИИ§ 86. Квадратные уравнения и системы уравнений второй степени с двумя переменными 144§ 87. Квадратные неравенства 145§ 88. Прогрессии 146ЧАСТЬ 5. СПРАВОЧНЫЕ МАТЕРИАЛЫГЛАВА 17. АРИФМЕТИКА И АЛГЕБРА§ 89. Начальные сведения по арифметике 149§ 90. Периодические десятичные дроби 150§ 91. Проценты 151§ 92. Пропорции 151§ 93. Формулы сокращенного умножения 152§ 94. Действия со степенями и корнями 153§ 95. Комплексные числа в алгебраической форме 154§ 96. Линейные уравнения и системы линейных уравнений 156§ 97. Краткие сведения об определителях. Решение системы линейных уравнений по формулам Крамера 159§ 98. Решение системы трех линейных уравнений стремя переменными методом Гаусса 161§ 99. Квадратные уравнения и квадратные неравенства 162§ 100. Прогрессии 163§ 101. Иррациональные уравнения и иррациональные неравенства 164§ 102. Логарифмы. Логарифмические неравенства 165§ 103. Показательные неравенства 168§ 104. Элементы комбинаторики 168ГЛАВА 18. ТРИГОНОМЕТРИЯ§ 105. Основные тригонометрические тождества 170§ 106. Формулы приведения 172§ 107. Обратные тригонометрические функции. Простейшие тригонометрические уравнения 172§ 108. Тригонометрические функции алгебраической суммы двух аргументов. Формулы удвоенного и половинного аргументов 174§ 109. Преобразование произведения тригонометрических функций в алгебраическую сумму и алгебраической суммы в произведение 175ГЛАВА 19. ГЕОМЕТРИЯ§ 110. Площади многоугольников. Окружность и круг 176§ 111. Объемы и площади поверхностей геометрических тел ... 178ГЛАВА 20. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ§ 112. Прямая на плоскости 181§ 113. Кривые второго порядка 184ГЛАВА 21. ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ§ 114. Производная 187§ 115. Исследование функций с применением производной 189§ 116. Дифференциал функции. Приложение дифференциала к приближенным вычислениям 192ГЛАВА 22. ИНТЕГРАЛ§ 117. Неопределенный интеграл 194§ 118. Определенный интеграл 197§ 119. Дифференциальные уравнения 198
Посмотрите другие готовые домашние задания: |