элементы теории вероятностей в примерах и задачах. козлов м.в. - книгу скачать.
М.: Изд-во МГУ, 1990 - 344 с. Основы теории вероятностей излагаются в форме примеров и задач, к которым в тексте приведены подробные решения. Уровень сложности колеблется в широком диапазоне: от тренировочных задач до маленьких исследований, могущих служить началом курсовой работы. Всего примеров и задач около 450. Принцип изложения — от частных моделей к общим понятиям — направлен на развитие у читателя вкуса и навыков к самостоятельному научному творчеству. Для освоения материала достаточно владения началами математического анализа. Формат: pdf / zip Размер: 2,7 Мб Скачать / Download файл
ОГЛАВЛЕНИЕПредисловиеГлава I.НАЧАЛЬНЫЕ ПОНЯТИЯ 9§ 1. Вероятность в классической схемеКлассическая вероятность и элементы комбинаторики (1.1—1.10). Симметричное случайное блуждание (1.11—1.19). Урновая модель (1.20—1.30).§ 2. Вероятностное пространство, случайные величины, распределение вероятностей 25События и вероятностная мера (2.1—2.4). Испытания Бернулли (2.5, 2.6). Разбиения, случайные величины в схеме Бернулли (2.7— 2.14). Случайные величины в схеме бесконечной последовательности испытаний Бернулли (2.15—2.18). Задача о разорении игрока (2.19, 2.20).§ 3. Непрерывные вероятностные модели 42Случайные величины в схеме случайного выбора точек из отрезка, функции распределений, плотности (3.1—3.10). Пуассоновский процесс и предельная схема Пуассона (3.11—3.15). Распределение арксинуса в симметричном блуждании (3.16). Формула Стирлинга и нормальное распределение в схеме симметричного блуждания (3.17—3.21). Многомерные распределения (3.22—3.27).§ 4. Независимость 66Независимые дискретные случайные величины, распределение суммы, производящие функции (4.1—4.11). Независимые события (4.12— 4.14). Независимые непрерывные случайные величины (4.15—4.22). Пуассоновский процесс и экспоненциальное распределение (4.23— 4.^6). Броуновское движение (4.27).§ 5. Условная вероятность 86Условные распределения дискретных случайных величин (5.1—5.10). .Марковские цепи (5.1 i —5.16). Условные плотности (5.17, 5.18). Марковские цепи с непрерывным множеством состояний (5.19, 5.20).§ 6. Пространство и мера 101Алгебра множеств, мера и ее свойства (G.1—6.7). Расширение алгебры множеств, внешняя мера, измеримые множества, теорема о существовании и единственности продолжении меры (6.8—6.18). .Мера Лебега (6.19). Меры на прямой и функции распределения (6.20—6.23). Мера на плоскости (6.24, 6.25). Последовательности испытаний (G.26—6.2S). Монотонные классы (6.30- 6.37).Глава II.ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ РАСПРЕДЕЛЕНИЙ . . 128§ 7. Математическое ожидание 128Математическое ожидание дискретных случайных величин (7.1— 7.16). Математическое ожидание в общем случае: определение, свойства, вычисление (7.17—7.34).§ 8. Дисперсия, ковариация, среднеквадратическое расстояние 143-Неравенство Чебышева, дисперсия, закон больших чисел в схеме Бернулли (8.1—8.10). Приближение непрерывных функций (8.11, 8.12). Вычисление н свойства дисперсии (8.13—8.16). Ковариация (8.17—8.21). Среднеквадратическое расстояние (8.22). Дисперсия суммы (8.23, 8.24). Закон больших чисел в форме Чебышева (8.25). Дисперсия как мера качества статистической оценки (8.26, 8.27). Матрица ковариаций (8.28—8.35). Линейные оценки с минимальной дисперсией (8.36).§ 9. Условное математическое ожидание 158'Определение (9.1—9.3). Оптимальная нелинейная оценка (9.4). Вычисление и свойства условного ожидания в дискретном случае (9.5— 9.12). Свойства в непрерывном случае (9.13—9.17). Многомерное нормальное распределение (9.18). Несмещенное оценивание и достаточные статистики (9.19—9.22). Мартингалы (9.23). Ветвящийся процесс (9.24).§ 10. Измеримые функции и интеграл 174-Интеграл Лебега от простых функций (10.1—10.12). Интеграл Лебега и его свойства (10.13—10.28). Интегралы Римана, Лебега, Ри-маиа—Стильтьеса, Лебега—Стильтьеса (10.29, 10.30). Интеграл на произведении пространств (10.31—10.35). Меры и плотности (10.36— 10.40). Марковские процессы (10.41).Глава III.НЕКОТОРЫЕ МОДЕЛИ И МЕТОДЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ 199§ 11. Простое симметричное блуждание 199Времена достижения и возвращения (11.1—11.6). Предельные теоремы для времен достижения и возвращения (11.7, 11.8). Ветвящийся процесс (11.9). Условное блуждание и броуновский мост, предельные теоремы (11.10—11.18, 11.21). Гауссовские процессы (11.19, 11.20). Броуновская экскурсия (11.22).§ 12. Схема Бернулли и простое блуждание 223Нормальное приближение и большие уклонения для биномиального распределения (12.1—12.4). Нормальное приближение для пуассоновского, отрицательного биномиального и гамма распределений (12.5—12.7). Эмпирическая функция распределения, статистики Колмогорова—Смирнова (12.8—12.10). Сходимость с вероятностью 1, усиленный закон больших чисел, леммы Бореля—Кантелли (12.11— 12.14). Времена достижения (12.15). Предельные теоремы для простого блуждания (12.16—12.20). Среднее и дисперсия времени достижения (12.21). Условная предельная теорема (12.22).§ 13. Сходимость распределений, преобразование Лапласа и характеристические функции 247Сходимость случайных величин и распределений (13.1—13.10). Асимптотическая нормальность выборочных квантилей (13.11). Сходимость производящих функций (13.12—13.14). Интеграл Римана—Стильтьеса, преобразование Лапласа, формула обращения, теорема непрерывности, моменты (13.15—13.30, 13.33). Применение преобразования Лапласа (13.31, 13.32, 13.34, 13.35). Характеристические функции(13.36—13.42). Закон больших чисел в форме Хинчина (13.43). Центральная предельная теорема (13.44—13.53). Приближение непрерывной функции тригонометрическими полиномами (13.54). Формула обращения для целочисленных величин (13.55).§ 14. Марковские модели 277Неоднородное простое блуждание (14.1—14.9). Процесс Гальтона— Ватсона (14.10—14.24). Условный ветвящийся процесс (14.25—14.29). Ветвящийся процесс с параметром ц<1 (14.30—14.34). Процессы с иммиграцией (14.35—14.37). Ветвящийся процесс в случайной среде (14.38). Дискретные процессы восстановления и марковские цепи (14.39—14.48).Литература 342Список обозначений и сокращений 343
Посмотрите другие готовые домашние задания: |