ЕГЭ и ГИА 2014      ГДЗ, Решебники, Учебники

Объявления



геометрия. ответы на экзаменационные билеты. 9 класс. лаппо л.д., попов м.а. - книгу скачать.


М.: Экзамен, 2010 - 78 с.

В данном пособии приводятся ответы на все вопросы экзаменационных билетов по геометрии, предлагаемых Министерством образования и науки РФ для проведения устной итоговой аттестации выпускников 9 классов общеобразовательных школ. В ответах на практические вопросы рассмотрены примеры решения типовых задач, знание которых необходимо для успешной сдачи экзаменов.

Предлагаемые ответы полностью удовлетворяют требованиям, предъявляемым на экзаменах в школах, и помогут школьникам быстро и эффективно подготовиться к экзаменам, систематизировать и укрепить свои знания.

В пособии содержатся шпаргалки к билетам.

Для простого и эффективного использования шпаргалки разрежьте каждую страницу на четыре части по пунктирной линии. Сложите полученные листы по порядку номеров - верхний левый, верхний правый, нижний левый, нижний правый. Для удобства использования можно скрепить получившуюся стопку степлером или скрепкой в верхнем левом углу.

Пособие предназначено для учащихся и преподавателей 9 классов общеобразовательных школ.

Формат: pdf / zip

Размер: 2,5 Мб

Скачать:

RGhost

СОДЕРЖАНИЕБилет №1 91. Сформулируйте определение окружности, вписанной в треугольник. Сформулируйте теорему о центре вписанной окружности. Приведите пример применения теоремы о центре вписанной окружности 92. Сформулируйте определение трапеции. Сформулируйте определение средней линии трапеции. Сформулируйте и докажите теорему о средней линии трапеции 93. Задача: Сторона правильного шестиугольника, описанного около окружности, равна 2 см. Найдите сторону правильного треугольника, вписанного в эту окружность 104. Задача: В треугольник ABC вписан равнобедренный прямоугольный треугольник DEF так, что его гипотенуза DF параллельна стороне АС, а вершина Е лежит на стороне АС. Найдите высоту треугольника ABC, если АС = 16 см; DF = 8 см 10Билет №2 121. Сформулируйте определение синуса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников 122. Сформулируйте определение равнобедренного треугольника. Сформулируйте и докажите признак равнобедренного треугольника 123. Задача: Стороны треугольника равны 3 см, 2 см и V3 см. Определите вид этого треугольника 134. Задача: На стороне АВ параллелограмма ABCD как на диаметре построена окружность, проходящая через точку пересечения диагоналей и середину стороны AD. Найдите углы параллелограмма 13Билет №3 141. Сформулируйте теорему Фалеса. Приведите пример ее применения 142. Сформулируйте определение равнобедренного треугольника. Сформулируйте и докажите свойство углов при основании равнобедренного треугольника 143. Задача: Угол между высотами ВК и BL параллелограмма ABCD, проведенными из вершины его острого угла В, в четыре раза больше самого угла ABC. Найдите утлы параллелограмма 154. Задача: Через вершину В равнобедренного треугольника ABC параллельно основанию АС проведена прямая BD. Через точку К - середину высоты ВН проведен луч АК, пересекающий прямую BD в точке D, а сторону ВС в точке N. Определите, в каком отношении точка N делит сторону ВС 15Билет №4 161. Сформулируйте определение окружности. Приведите формулу длины окружности. Приведите формулу длины дуги окружности. Приведите примеры применения либо формулы длины окружности, либо формулы длины дуги окружности 162. Сформулируйте определение медианы треугольника. Сформулируйте и докажите свойство медианы равнобедренного треугольника 163. Задача: Сторона ромба равна 10, а один из его углов равен 30°. Найдите радиус окружности, вписанной в ромб 174. Задача: Одна из диагоналей прямоугольной трапеции делит эту трапецию на два прямоугольных равнобедренных треугольника. Какова площадь этой трапеции, если ее меньшая боковая сторона равна 4? 17Билет №5 181. Сформулируйте неравенство треугольника. Приведите пример его применения 182. Сформулируйте определение параллелограмма. Сформулируйте и докажите свойство диагоналей параллелограмма 183. Задача: Найдите больший угол треугольника, если две его стороны видны из центра описанной окружности под углами 100° и 120° 184. Задача: Известно, что в равнобокую трапецию с боковой стороной, равной 5, можно вписать окружность. Найдите длину средней линии трапеции. 19Билет №6 201. Приведите формулы площади прямоугольника и площади параллелограмма. Приведите примеры применения площади прямоугольника либо площади параллелограмма 202. Сформулируйте определение равных треугольников. Сформулируйте признаки равенства треугольников и докажите один из них по выбору 203. Задача: Определите вид четырехугольника, вершины которого являются серединами сторон произвольного выпуклого четырехугольника 224. Задача: В треугольник ABC вписана окружность, которая касается сторон АВ и ВС в точках Е и F соответственно. Касательная МК к этой окружности пересекает стороны АВ и ВС соответственно в точках М и К. Найдите периметр треугольника ВМК, если BE = 6 см 22Билет №7 231. Приведите формулы для радиусов вписанных и описанных окружностей правильных многоугольников. Приведите пример их применения для n-угольников для любого п > 6 (п определяет учащийся) 232. Сформулируйте определение параллельных прямых. Сформулируйте аксиому параллельных прямых. Сформулируйте признаки параллельности прямых и докажите один из них по выбору.. 233. Задача: В трапеции ABCD диагональ BD является биссектрисой прямого угла ADC. Найдите отношение диагонали BD к стороне АВ трапеции, если Z BAD = 30°. 244. Задача: Треугольник ABC, стороны которого 13 см, 14 см и 15 см, разбит на три треугольника отрезками, соединяющими точку пересечения медиан М с вершинами треугольника. Найдите площадь треугольника ВМС, 25Билет №8 261. Сформулируйте определения круга и сектора. Приведите формулы площади круга и площади сектора. Приведите пример применения одной из формул: либо площади круга, либо площади сектора по выбору учащегося 262. Сформулируйте определение прямоугольного треугольника. Сформулируйте и докажите теорему Пифагора 263. Задача: Площадь треугольника, описанного около окружности, равна 84 см2. Найдите периметр треугольника, если радиус окружности равен 7 см 274. Задача: В равнобокой трапеции одно из оснований в два раза больше другого. Диагональ трапеции является биссектрисой острого угла. Найдите меньшее основание трапеции, если ее площадь равна 27 V3 см2 27Билет №9 291. Сформулируйте определение окружности, описанной около треугольника. Сформулируйте теорему о центре описанной окружности. Приведите пример применения теоремы о центре описанной окружности 292. Сформулируйте определение средней линии треугольника. Сформулируйте и докажите теорему о средней линии треугольника 293. Задача: Из вершины В в треугольнике ABC проведены высота ВН и биссектриса BD. Найдите угол между высотой ВН и биссектрисой BD, если углы ВАС и ВСА равны 20° и 60° соответственно 304. Задача: Две окружности, радиусы которых равны 9 см и 3 см, касаются внешним образом в точке А. Через точку А проходит их общая секущая ВС, причем точка В принадлежит большей окружности. Найдите длину отрезка АВ, если отрезок АС равен 5 см 30Билет № 10 311. Сформулируйте теорему о сумме углов треугольника. Приведите пример ее применения 312. Сформулируйте определение ромба. Сформулируйте и докажите свойство диагоналей ромба 313. Задача: Внутри равностороннего треугольника ABC отмечена точка D, такая, что ZBAD = ZBCD = 15°. Найдите угол ADC 314. Задача: Окружность радиуса R касается гипотенузы равнобедренного прямоугольного треугольника в вершине его острого угла и проходит через вершину прямого угла. Найдите длину дуги, заключенной внутри треугольника, если R = —^ 32Билет № 11 331. Сформулируйте определение выпуклого многоугольника. Сформулируйте теорему о сумме углов выпуклого многоугольника. Приведите пример ее применения 332. Сформулируйте определение прямоугольника. Сформулируйте и докажите свойство диагоналей прямоугольника 333. Задача: Через вершины А, В и С ромба АВСО проведена окружность, центром которой является вершина О. Найдите длину дуги АС, содержащей вершину В, если длина всей окружности равна 30 см 344. Задача: При пересечении двух прямых пит секущей к образовалось восемь углов. Четыре из них равны 60°, а четыре другие - 120°. Определите взаимное расположение прямых п и m 34Билет № 12 351. Приведите формулы площади треугольника. Приведите примеры их применения 352. Сформулируйте определение параллелограмма. Сформулируйте и докажите признак параллелограмма по выбору учащегося 363. Задача: Точки А, В и С делят окружность на три части так, что uAB : uBC : uAC = 4:7:9. Определите наибольший угол треугольника ABC 374. Задача: Углы при основании AD трапеции ABCD равны 60° и 30°, AD = 17 см, ВС = 7 см. Найдите боковые стороны 37Билет №13 381. Сформулируйте определение тангенса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников 382. Сформулируйте определение параллелограмма. Сформулируйте и докажите свойства углов и сторон параллелограмма 383. Задача: Длины двух сторон равнобедренного треугольника равны соответственно 6 см и 2 см. Определите длину третьей стороны этого треугольника 394. Задача: Два круга, радиусы которых равны 5 см, имеют общую хорду длины 5V2 см. Найдите площадь общей части этих кругов. 39Билет №14 401. Сформулируйте определение внешнего угла треугольника. Сформулируйте теорему о свойстве внешнего угла треугольника. Приведите пример ее применения 402. Сформулируйте и докажите теорему косинусов. Приведите пример ее применения для решения треугольников 403. Задача: Стороны треугольника равны 4 см, 5 см и 8 см. Найдите длину медианы, проведенной из вершины большего угла 414. Задача: В параллелограмме ABCD диагональ BD перпендикулярна стороне AD. Найдите АС, если AD = 6 см, BD = 5 см 42Билет № 15 431. Приведите формулу площади трапеции. Приведите пример ее применения 432. Сформулируйте определение равных треугольников. Сформулируйте признаки равенства прямоугольных треугольников и докажите один из них по выбору 433. Задача: Большая диагональ ромба равна 12 см, а один из его углов равен 60°. Найдите длину вписанной в него окружности 444. Задача: В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении 17 : 15, а боковая сторона равна 34 см. Найдите основание треугольника 44Билет №16 451. Сформулируйте теорему о зависимости между сторонами и углами треугольника. Приведите пример ее применения 452. Сформулируйте определение подобных треугольников. Сформулируйте признаки подобия треугольников и докажите один из них по выбору 453. Задача: Найдите меньший угол параллелограмма, если его стороны равны 1 и V3 , а одна из диагоналей равна v7 474. Задача: В треугольник ABC вписан квадрат так, что две его вершины лежат на стороне АВ и по одной вершине -на сторонах АС и ВС. Найдите площадь квадрата, если АВ = 40 см, а высота, проведенная из вершины С, имеет длину 24 см 47Билет № 17 481. Сформулируйте определение вектора. Сформулируйте определение суммы векторов. Сформулируйте свойства сложения векторов. Приведите примеры сложения векторов 482. Сформулируйте и докажите теорему синусов. Приведите пример ее применения для решения треугольников 483. Задача: Вписанный угол, образованный хордой и диаметром окружности, равен 72°. Определите, что больше: хорда или радиус окружности 494. Задача: В трапеции ABCD стороны АВ и CD равны, биссектриса тупого угла В перпендикулярна диагонали АС и отсекает от данной трапеции параллелограмм. Найдите величину угла BCD 49Билет №18 501. Сформулируйте определение вектора. Сформулируйте определение произведения вектора на число. Сформулируйте свойства произведения вектора на число. Приведите примеры произведения вектора на число 502. Сформулируйте определения центрального угла окружности и угла, вписанного в окружность. Сформулируйте и докажите теорему об измерении вписанного угла 503. Задача: Медиана ВМ треугольника ABC перпендикулярна его биссектрисе AD. Найдите АВ, если АС = 12 см 514. Задача: В прямоугольной трапеции ABCD с основаниями 17 см и 25 см диагональ АС является биссектрисой острого угла А. Найдите меньшую боковую сторону трапеции 52Билет №19 531. Сформулируйте определение скалярного произведения векторов и определение угла между векторами. Приведите пример применения скалярного произведения векторов для определения угла между векторами 532. Сформулируйте определение серединного перпендикуляра к отрезку. Сформулируйте и докажите свойство серединного перпендикуляра к отрезку .533. Задача: На рисунке: Z1 = 55°; Z2 = 125°; Z3 = 123°. Найдите Z4 544. Задача: Треугольник ABC - равносторонний со стороной, равной а. На расстоянии а от вершины А взята точка D, отличная от точек В и С. Найдите угол BDC 54Билет №20 551. Сформулируйте свойство углов, образованных при пересечении параллельных прямых секущей. Приведите пример вычисления углов при пересечении параллельных прямых секущей 552. Сформулируйте теоремы о пропорциональных отрезках в прямоугольном треугольнике и докажите один из них по выбору 553. Задача: Из точки, лежащей на гипотенузе равнобедренного прямоугольного треугольника, на катеты треугольника опущены перпендикуляры. Найдите катет треугольника, если периметр полученного четырехугольника равен 12 см 564. Задача: Около правильного шестиугольника со стороной 8,5 описана окружность. Около этой окружности описан правильный четырехугольник. Найдите сторону четырехугольника 56Билет №21 571. Сформулируйте определение косинуса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников 572. Сформулируйте определение биссектрисы угла. Сформулируйте и докажите свойство биссектрисы треугольника 573. Задача: Площадь ромба ABCD равна 242V2 . Вычислите сторону ромба, если один из его углов равен 135° 584. Задача: К окружности, радиус которой равен 3, из точки, удаленной от центра окружности на расстояние 5, проведены две касательные. Вычислите расстояние между точками касания 58Шпаргалки к билетам 59


----------------------------------------------

----------------------------------------------

На сайте вы найдете задачи, тесты, задания, шпаргалки, решебники по ЕГЭ и ГИА 2014г. Все авторские права на данные файлы сохраняются за правообладателями. Любое коммерческое и иное использование кроме ознакомления запрещено

Решу егэ 2014 - advice-me.ru