Экзаменационные билеты по алгебре и началам анализа 11 класс.- книгу скачать.
(новые, для школ, перешедших на профильное обучение, 2006г.) Скачать - 105Кб, doc/zip; 8стр. О ПРИМЕРНЫХ БИЛЕТАХ ДЛЯ СДАЧИ ЭКЗАМЕНА ПО ВЫБОРУ ВЫПУСКНИКАМИ XI(XII) КЛАССОВ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ, ОСУЩЕСТВИВШИХ ПЕРЕХОД НА ПРОФИЛЬНОЕ ОБУЧЕНИЕ Письмо Федеральной службы по надзору в сфере образования и науки от 10 февраля 2006 г. № 01-66/07-01 Федеральная служба по надзору в сфере образования и науки информирует о том, что подготовлены новые комплекты примерных билетов по 20 предметам федерального базисного учебного плана для сдачи экзамена по выбору выпускниками XI(XII) классов общеобразовательных учреждений Российской Федерации. Новые комплекты экзаменационных билетов разработаны для образовательных учреждений, осуществивших переход на профильное обучение. Они позволяют проводить итоговую аттестацию выпускников XI(XII) классов общеобразовательных учреждений с учетом того уровня (базового или профильного), на котором велось обучение по предмету. Образовательным учреждениям, не перешедшим на профильное обучение, рекомендуются примерные экзаменационные билеты для проведения устной итоговой аттестации выпускников XI(XII) классов общеобразовательных учреждений, опубликованные в предыдущем году в журнале «Вестник образования» (№ 5–6, 2005) и размещенные в этом году на сайте журнала www.vestnik.edu.ru. Согласно Закону Российской Федерации «Об образовании» освоение программ среднего (полного) общего образования завершается обязательной итоговой аттестацией. Государственная (итоговая) аттестация выпускников XI(XII) классов общеобразовательных учреждений Российской Федерации проводится на основании Положения о государственной (итоговой) аттестации выпускников IX и XI(XII) классов общеобразовательных учреждений Российской Федерации (утверждено приказом Минобразования России от 3 декабря 1999 г. № 1075 с изменениями от 16 марта 2001 г. № 1022, от 25 июня 2002 г. № 2398, от 21 января 2003 г. № 135). Итоговая аттестация выпускников XI(XII) классов общеобразовательных учреждений проводится в форме устных и письменных экзаменов. Форма проведения устной аттестации по всем предметам может быть различной: экзамен по билетам, собеседование, защита реферата, комплексный анализ текста (по русскому языку). Представленные экзаменационные билеты позволяют проводить итоговую аттестацию выпускников XI(XII) классов общеобразовательных учреждений с учетом того уровня, на котором велось обучение по предмету (базового или профильного). Экзаменационные билеты разработаны по 20 общеобразовательным предметам: 1. Русский язык 2. Литература 3. Иностранный язык 4. Алгебра и начала анализа 5. Геометрия 6. История России 7. Всеобщая история 8. Обществознание 9. Экономика 10. Право 11. География 12. Физика 13. Химия 14. Биология 15. Естествознание 16. Информатика и ИКТ 17. Мировая художественная культура (МХК) 18. Технология 19. Основы безопасности жизнедеятельности (ОБЖ) 20. Физическая культура Каждый экзаменационный комплект по предмету содержит не менее 25 билетов, каждый билет включает три вопроса (за исключением комплекта по естествознанию, где предложено по два вопроса в билете). К экзаменационным билетам по всем предметам разработаны краткие пояснительные записки об особенностях проведения устного экзамена по предмету. В них объяснена принципиальная разница между комплектами, составленными с учетом базового уровня изучения предмета и комплектами, составленными с учетом профильного уровня изучения предмета, дана характеристика структуры экзаменационного билета в целом, прокомментированы различия первого, второго и третьего вопросов билета. Во всех пояснительных записках указано примерное время, отводимое на подготовку выпускника к ответу, описаны подходы к оцениванию ответа выпускника, носящие рекомендательный характер, даны разъяснения по использованию предложенного экзаменационного материала при разработке экзаменационных билетов на уровне общеобразовательного учреждения. Билеты всех предложенных комплектов носят примерный характер: общеобразовательное учреждение имеет право в экзаменационный материал внести изменения, учитывающие региональный компонент, особенности программы, по которой строилось обучение; частично заменить вопросы, дополнить другими заданиями, а также разработать собственные экзаменационные материалы для проведения экзаменов по выбору в устной форме. Порядок экспертизы, утверждения и хранения аттестационного материала для проведения экзаменов по выбору устанавливается уполномоченным органом местного самоуправления. Руководитель В. БОЛОТОВ Вестник образования № 5–6 26.Март, 2006 АЛГЕБРА И НАЧАЛА АНАЛИЗА – XI класс По Положению о государственной (итоговой) аттестации выпускников XI(XII) классов общеобразовательных учреждений Российской Федерации учащиеся сдают не менее трех экзаменов по выбору, содержание и форму проведения которых определяет непосредственно образовательное учреждение. Устный экзамен по алгебре и началам анализа – экзамен по выбору, форма проведения которого может быть различной: ответ по билету, защита реферата, собеседование, тестовая проверка. В данном комплекте предложены материалы для проведения устного экзамена по алгебре и началам анализа в форме ответа по билетам для итоговой аттестации выпускников XI(XII) классов общеобразовательных учреждений, изучавших математику на базовом и профильном уровнях. Представленные экзаменационные билеты для итоговой аттестации выпускников старшей школы не нацелены на какую-либо из авторских программ или конкретный учебник, используемый в школе. Они составлены с учетом обязательных минимумов содержания основного общего и среднего (полного) общего образования (приказы Минобразования России от 19.05.1998 № 1236 и от 30.06.1999 № 56), а также государственных стандартов основного общего и среднего (полного) общего образования (приказ Минобразования России от 05.03.2004 № 1089). В комментариях описана структура билетов и даны общие рекомендации по оцениванию ответов учащихся. В комплект входят 25 билетов, каждый из которых включает в себя четыре вопроса по разным разделам курса алгебры и начал анализа. Представленные 25 билетов можно использовать для аттестации выпускников, изучавших математику как в объеме базового уровня, так и в объеме профильного уровня стандарта образования. Все билеты имеют одну и ту же структуру: два теоретических вопроса и две задачи разного уровня сложности. В том случае, если проверяемый теоретический материал входит в стандарт и на базовом, и на профильном уровнях, в билете приводится одна общая формулировка вопроса. В противном случае приводятся две формулировки: – под буквой а) вопрос сформулирован для базового уровня изучения предмета; – под буквой б) вопрос сформулирован для профильного уровня изучения предмета. Задачи, проверяющие овладение базовым и профильным уровнями стандарта, обозначены соответственно буквами а) и б). Для сдачи экзамена на базовом уровне ученику нужно без доказательства ответить на первые два теоретических вопроса и решить задачи номер 3а) и 4а). Отметка «5» ставится в том случае, если ученик ответил на теоретические вопросы и верно с обоснованием решил обе задачи. Отметка «4» ставится в том случае, если ученик верно ответил на теоретические вопросы, но при решении задач допустил описки или вычислительные ошибки. Отметка «3» ставится в том случае, если ученик верно ответил на теоретические вопросы и решил одну из задач. В остальных случаях ставится отметка «2». Для сдачи экзамена на профильном уровне ученику нужно ответить на первые два теоретических вопроса с полными доказательствами и решить задачи номер 3б) и 4б). Принципы выставления оценки те же, что и на базовом уровне. Примерное время, отводимое на подготовку ученика к ответу, – 40 минут. Экзаменационные билеты носят примерный характер и могут быть использованы при разработке экзаменационных материалов в соответствии с особенностями образовательной программы конкретной школы. В предложенный материал можно внести изменения исходя из особенностей выбранной учителем программы по предмету: частично заменить вопросы, дополнить другими заданиями, а также разработать свои варианты, но при этом обязательно нужно руководствоваться нормативными документами, определяющими требования к знаниям и умениям выпускников средней (полной) школы, изучавших предмет на базовом или профильном уровне. Билет № 1 1. Понятие возрастающей функции, пример, графическая иллюстрация. 2. Свойства степеней с действительным показателем. Доказательство одной из теорем о свойствах степеней с рациональным показателем. 3. а) Решите уравнение: log4x + log43 = log415. б) Решите систему уравнений: lgx + lgy = 3 xlgx = 10000 4. а) Вычислите площадь фигуры, ограниченной линиями y = x2 -3, x = 2, x = 5, y = 0 б) Вычислите площадь фигуры, ограниченной прямой y = 6x и параболой y = 12x – 3x2. Билет № 2 1. Понятие о точках максимума (минимума) функции, пример, графическая иллюстрация. 2. Вывод общей формулы корней уравнения sin x = а. 3. а) Вычислите: б) Вычислите: 4. а) Решите неравенство log2 (2,5x +1) ≤ -2 б) Найдите все значения х, для которых точки графика функциилежат выше соответствующих точек графика функции . Билет № 3 1. а) Понятие о степени с рациональным показателем. б) Понятие арксинуса числа, пример. 2. Основное свойство первообразной, его геометрическая иллюстрация. 3. а) Найдите угловой коэффициент касательной, проведенной к графику функции у = 1 + sin х в точке с абсциссой xo = p. б) Исследуйте функцию у = хех и постройте ее график. 4. а) Решите неравенство б) Найдите наименьшее значение функции Билет № 4 1. а) Понятие убывающей функции, пример, графическая иллюстрация. б) Понятие арккосинуса числа, пример. 2. Показательная функция, ее свойства и график. Доказательство одного из свойств. 3. а) Точка движется по координатной прямой согласно закону x(t) = 4t2 – t , где х(t) – координата точки в момент времени t. Найдите скорость точки при t = 2. б) В каких точках касательная к кривой параллельна прямой у = 2х – 1? 4. а) Найдите наименьшее значение функции если б) Найдите наименьшее целое значение функции Билет № 5 1. а) Основные тригонометрические тождества. б) Понятие арктангенса числа, пример. 2. Логарифмическая функция, ее свойства и график. Доказательство одного из свойств. 3. а) Найдите угловой коэффициент касательной, проведенной к графику функции f(x) = 2 – x2 + 3x4 в точке с абсциссой xo = -2 . б) Вычислите площадь фигуры, ограниченной линиями у = х2 – 2, y = 2x – 2. 4. а) Найдите сумму всех целых чисел из области определения функции б) Найдите наименьшее целое число, которое не входит в область определения функции Билет № 6 1. Понятие производной, ее механический смысл. 2. Вывод общей формулы корней уравнения cos х = а. 3. а) Упростите выражение б) Вычислите значение выражения 4. а) Найдите значение функции вточке xo, если известно, что функция у = f(x) – четная, функция y = g(x) – нечетная, f(xo) = 5, g(xo) = 1. б) Даны четная функция y = f(x) и нечетная функция y = g(x). Решите уравнение f(x) = g(x), если для всех действительных значений x выполняется равенство f(x) + g(x) = 2x + 7. Билет № 7 1. Понятие производной, ее геометрический смысл. 2. Вывод общей формулы корней уравнения tg х = а. 3. а) Вычислите б) Упростите выражение 4. а) Найдите угловой коэффициент касательной, проведенной к графику функции y = 3cosx – 2x в его точке с абсциссой б) Нечетная функция y = f(x) определена на всей числовой прямой. Для всякого неположительного значения переменной x значение этой функции совпадает со значением функции g(x) = x(2x + 1)(x – 2)(x – 3). Сколько корней имеет уравнение f(x) = 0? Билет № 8 1. а) Понятие синуса числа, пример, графическая иллюстрация. б) Понятие о непрерывности функции, пример, графическая иллюстрация. 2. Свойства корней n-й степени. Доказательство одной из теорем. 3. Решите уравнение a) б) 4sin х + 3cos x = 5. 4. а) Найдите множество значений функции б) Найдите наибольшее значение функции y = 2 – log8 (2-x) на отрезке [-3;6] Билет № 9 1. а) Понятие косинуса числа, пример, графическая иллюстрация. б) Теоремы о непрерывности рациональных и дробно-рациональных функций на области их определения. 2. Свойства логарифмов. Доказательство одной из теорем (по выбору учащегося). 3. а) Найдите первообразную функции f(x) = ex – x3 б) Вычислите площадь фигуры, ограниченной линиями у = 2√х, 3у + 2х = 8 и осью абсцисс. 4. а) Решите уравнение 2x-1 + 2x-2 + 2x-3 = 448 б) Найдите произведение корней уравнения Билет № 10 1. Понятие о первообразной функции. 2. Функция y = tgx, ее свойства и график. Доказательство одного из свойств. 3. a) Решите уравнение log5(8x) = log527 – log53. б) Решите уравнение log2(9x-1 + 7) = 2log2(3x-1 + 1) 4. а) Найдите область определения функции б) Найдите все значения a, при которых функцияимеет максимум в точке x0 = 1,25. Билет № 11 1. а) Нахождение скорости процесса, заданного формулой. б) Понятие об интеграле. 2. Функция y = sin x, ее свойства и график. Доказательство одного из свойств. 3. Вычислите: а) б) 6(log2125)log52 + 2lg7 ∙ 5lg7 4. а) Решите уравнение б) Решите систему уравнений Билет № 12 1. а) Формула Ньютона–Лейбница. б) Формула Ньютона–Лейбница. Пример применения формулы для вычисления интегралов. 2. Функция y = cos x, ее свойства и график. Доказательство одного из свойств. 3. Упростите выражение: а) б) 4. а) Решите уравнение (30,5x+7 – 9)log2(5 + 2x) = 0 б) Найдите сумму корней уравнения Билет № 13 1. Правило нахождения наибольшего (наименьшего) значения функции, пример. 2. а) Синус и косинус двойного угла. б) Формулы суммы и разности синусов (косинусов). Доказательство одной из формул. 3. а) Найдите значение выражения б) Вычислите: 4. а) Решите уравнение б) Решите уравнение Билет № 14 1. Понятие экстремума функции, пример. 2. Формулы сложения тригонометрических функций и следствия из них. Доказательство одной из формул и следствия из нее. 3. а) Упростите выражение б) Найдите значение выражения при а = 4 и b = 5. 4. а) Решите уравнение 2 – log4(x + 3) = log4(x + 3). б) Найдите все значения x, для которых точки графика функции лежат выше соответствующих точек графика функции Билет № 15 1. а) Понятие четной функции, пример, графическая иллюстрация. б) Признак постоянства функции на промежутке, пример, графическая иллюстрация. 2. Теорема о вычислении площади криволинейной трапеции. 3. а) Найдите значение выражения б) Вычислите: 4. а) Решите уравнение log2(9х–1+ 7) = 2log2(3х–1+ 1). б) Найдите все значения x, для которых точки графика функции лежат выше соответствующих точек графика функции Билет № 16 1. а) Понятие тангенса числа. б) Теорема Лагранжа, ее геометрический смысл. 2. Степенная функция, ее свойства и график. Доказательство одного из свойств. 3. а) Упростите выражение (cosx – sinx)2 + 2sinx cosx. б) Найдите значение выражения 4. а) Решите неравенство б) Решите уравнение Билет №17 1. Основные тригонометрические тождества. 2. Правила вычисления первообразных. Доказательство одного из правил. 3. а) Решите неравенство б) Решите неравенство 4. а) Найдите длину промежутка возрастания функции б) Найдите промежутки убывания функции f(x) = x – 2lnx. Билет № 18 1. а) Логарифм числа, пример. б) Логарифм числа, пример, основное логарифмическое тождество. 2. Таблица первообразных элементарных функций. 3. а) Решите уравнение 7 ∙ 3x+3 + 3x+2 = 22 б) Решите неравенство 49 ∙ 7x > 73x+3 4. а) Найдите наибольшее значение функции на промежутке б) Найдите наименьшее целое значение функции y = 12 ∙ 5sin3xcos2x–cos3xsin2x–2 Билет № 19 1. Формулы приведения, примеры. 2. Теорема о производной суммы двух функций. 3. а) Упростите выражение б) Вычислите: 4. а) Решите уравнение б) Найдите все значения x, для которых точки графика функции лежат ниже соответствующих точек графика функции Билет № 20 1. Десятичный и натуральный логарифмы, число e. 2. Достаточные условия возрастания функции. 3. а) Решите уравнение б) Решите уравнение 4. а) На рисунке изображен график функции y = f(x), заданной на промежутке (–3; 6). Укажите множество значений этой функции. б) Найдите наибольшее значение функции y = 1– log9(3-x) на отрезке [–1; 5]. Билет № 21 1. Понятие котангенса числа, пример. 2. Таблица производных элементарных функций (степенной, синуса, косинуса). Доказательство одной из формул. 3. а) Найдите значение выражения б) Найдите значение выражения 4. а) Найдите наибольшее значение функции на промежутке б) Найдите наибольшее целое значение функции Билет № 22 1. Понятие нечетной функции, пример, иллюстрация на графике. 2. Производная показательной функции. 3. а) Решите уравнение 2sinx = –1. б) Решите уравнение 4. а) Найдите множество значений функции y = 3 + log5(5-x) на промежутке [–1; 3]. б) Найдите минимум функции Билет № 23 1. Понятие степени с рациональным показателем. 2. Касательная. Вывод уравнения касательной к графику дифференцируемой функции в данной точке. 3. Решите уравнение а) б) 4. а) Найдите наименьшее значение функции y = 5 + log2(2x) на отрезке [–3; 1]. б) Найдите наименьшее значение функции y = 3 – log4(2-x) на отрезке [–1; 3]. Билет № 24 1. Понятие периодической функции, пример, иллюстрация на графике. 2. Достаточные условия убывания функции. 3. а) Найдите значение cosα, если б) Найдите значение выражения 10cos(arctg√3) 4. а) Решите уравнение б) Найдите наименьшее значение a, при котором уравнение xex = a имеет единственное решение. Билет № 25 1. а) Логарифм числа, пример. Формула перехода к новому основанию логарифма. б) Понятие об интеграле. 2. Достаточные условия существования максимума (минимума) функции. 3. а) Решите уравнение 2cosx – 1 = 0. б) Решите уравнение 3cosx – sin2x = 0. 4. а) Найдите промежутки возрастания функции y = ex – x. б) При каких значениях a функция f(x) = e2x ∙ x2 + ae2x + 3возрастает на всей числовой прямой? В тексте документа есть специальные знаки и формулы, нельзя полностью исключить возможные ошибки, поэтому прилагается и оригинал текста в формате pdf - Скачать, 982 Кб - это общий список, все предметы)
----------------------------------------------
---------------------------------------------- |