Поделиться:
Олимпиада по математике
5-6 класс
1.Выполните действие самым рациональным способом:
2.Найдите пропущенные цифры, вместо которых стоят пропуски:
* 8 *
4 * 2
--------------
7 *0
* * *
* * * *
-----------------------
* * * * 2 *
3.На одной чаше весов лежат шесть одинаковых пачек чая и гиря массой 50г., а на другой – одна пачка чая и две гири массой 100 и 200 г. Весы находятся в равновесии. Определите, сколько граммов весит одна пачка чая?
4.Из 40 учащихся 5 класса 32 ходят на кружок «Умелые руки», 21 посещают спортивную секцию, 15 учащихся ходят и на кружок, и на секцию. Сколько учащихся не ходят ни на этот кружок ни на эту секцию?
5. Запишите число 100 цифрами от 1 до 9, идущими по возрастающей и соединенными знаками действий.
ШКОЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ
6 КЛАСС
1.Терпеливая Маша обшивает квадратную салфетку тесьмой по краю за 1 час. Сколько часов ей понадобится, чтобы обшить квадратную салфетку, площадь которой в 4 раза больше?
2.Чему равно 45% от от 240?
3.Четыре белки съели 1999 орехов, каждая не меньше, чем 100. Первая белка съела больше всех. Вторая и третья вместе съели 1265 орехов. Сколько орехов съела первая белка?
4.Старые часы отстают на 20 секунд в час. Сколько времени они покажут через сутки после того, как стрелки установили на 12 часов?
5.Старый гном разложил свои сокровища в 3 разноцветных сундука, стоящих у стены. В один – драгоценные камни, в другой – золотые монеты, а в третий – магические книги. Он помнит, что красный сундук правее, чем драгоценные камни. А магические книги правее, чем красный сундук. В каком сундуке лежат магические книги, если зелёный сундук стоит левее, чем синий?
Олимпиада по математике
6 класс
Задача 1. [4 балла] По двум телевизионным каналам одновременно начали показывать один и тот же фильм. На первом канале фильм разбили на части по 20 минут каждая и вставили между ними двухминутные рекламные паузы. А на втором канале фильм разбили на части по 10 минут каждая и вставили между ними минутные рекламные паузы. На каком канале фильм закончится раньше?
Задача 2. [4 балла] В конце четверти Вовочка выписал подряд в строчку свои текущие отметки по пению и поставил между некоторыми из них знак умножения. Произведение получившихся чисел оказалось равным 2007. Какая отметка выходит у Вовочки в четверти по пению? ("Колов" учительница пения не ставит.)
Задача 3. [5 баллов] Волк с тремя поросятами написал детектив "Три поросёнка--2", а потом вместе с Красной Шапочкой и её бабушкой кулинарную книгу "Красная Шапочка-2". В издательстве выдали гонорар за обе книжки поросёнку Наф-Нафу. Он забрал свою долю и передал оставшиеся 2100 золотых монет Волку. Гонорар за каждую книгу делится поровну между её авторами. Сколько денег Волк должен взять себе?
Задача 4. [6 баллов] В Совершенном городе шесть площадей. Каждая площадь соединена прямыми улицами ровно с тремя другими площадями. Никакие две улицы в городе не пересекаются. Из трёх улиц, отходящих от каждой площади, одна проходит внутри угла, образованного двумя другими. Начертите возможный план такого города.
Задача 5. [7 баллов] Нарисуйте, как из данных трёх фигурок, использовав каждую ровно один раз, сложить фигуру, имеющую ось симметрии.
Задача 6. [4(а)+5(б)=9 баллов] Кощей Бессмертный похитил у царя трёх дочерей. Отправился Иван-царевич их выручать. Приходит он к Кощею, а тот ему и говорит:
"Завтра поутру увидишь пять заколдованных девушек. Три из них - царевы дочери, а ещё две - мои. Для тебя они будут неотличимы, а сами друг дружку различать смогут. Я подойду к одной из них и стану у неё спрашивать про каждую из пятерых: "Это царевна?". Она может отвечать и правду, и неправду, но ей дозволено назвать царевнами ровно двоих (себя тоже можно называть). Потом я так же опрошу каждую из остальных девушек, и они тоже должны будут назвать царевнами ровно двоих. Если после этого угадаешь, кто из них и вправду царевны, отпущу тебя восвояси невредимым. А если ещё и догадаешься, которая царевна старшая, которая средняя, а которая младшая, то и их забирай с собой."
Иван может передать царевнам записку, чтобы научить их, кого назвать царевнами. Может ли он независимо от ответов Кощеевых дочерей:
а) вернуться живым [4 балла];
б) увезти царевен с собой? [5 баллов]? |